1. 矩阵的逆

定义

A→A−1AB=BA=E⇒A−1=B

A\to A^{-1} \\ AB=BA=E\Rightarrow A^{-1}=B

A→A−1AB=BA=E⇒A−1=B

性质

adjA=A∗AA∗=A∗A=∣A∣EAA∗∣A∣=EA−1=adjAdet⁡A

adjA = A^*\\ AA^*=A^*A=|A|E\\\frac{AA^*}{|A|}=E\\A^{-1} = \frac{adjA}{\det A}

adjA=A∗AA∗=A∗A=∣A∣E∣A∣AA∗​=EA−1=detAadjA​

2. 初等变换法:

[AE]⟶初等行变换[EA−1]

\left[\begin{array}{c|c}A&E\end{array}\right]\overset{初等行变换}{\longrightarrow }\left[\begin{array}{c|c}E & A^{-1}\end{array}\right]

[A​E​]⟶初等行变换​[E​A−1​]

[AE]⟶初等列变换[EA−1]

\left[\begin{array}{}A\\\hline E\end{array}\right]\overset{初等列变换}{\longrightarrow} \left[\begin{array}{}E\\\hline A^{-1}\end{array}\right]

[AE​​]⟶初等列变换​[EA−1​​]

3. 特征多项式法

∣A−λE∣=det⁡(A−λE)⟶关于λ的n次多项式anλn+an−1λn−1+⋯+a1λ+a0

|A-\lambda E| = \det(A-\lambda E)\overset{关于\lambda的n次多项式}{\longrightarrow}a_n\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0

∣A−λE∣=det(A−λE)⟶关于λ的n次多项式​an​λn+an−1​λn−1+⋯+a1​λ+a0​

AAA可逆则:

AAA可逆⇒\Rightarrow⇒无0特征值λ≠0\lambda\ne0λ=0⇒a0≠0\Rightarrow a_0\ne0⇒a0​=0;

特征多项式是AAA的化零多项式;

anAn+an−1An−1+⋯+a1A+a0E=0

a_nA^n+a_{n-1}A^{n-1}+\cdots+a_1A+a_0E = 0

an​An+an−1​An−1+⋯+a1​A+a0​E=0

因此有

an−a0An+an−1−a0An−1+⋯+a1−a0A=E⇒A(an−a0An−1+an−1−a0An−2+⋯+a1−a0E)=E⇒A−1=an−a0An−1+an−1−a0An−2+⋯+a1−a0E

\frac{a_n}{-a_0}A^n+\frac{a_{n-1}}{-a_0}A^{n-1}+\cdots+\frac{a_1}{-a_0}A=E\Rightarrow \\A(\frac{a_n}{-a_0}A^{n-1}+\frac{a_{n-1}}{-a_0}A^{n-2}+\cdots+\frac{a_1}{-a_0}E)=E\Rightarrow \\A^{-1}=\frac{a_n}{-a_0}A^{n-1}+\frac{a_{n-1}}{-a_0}A^{n-2}+\cdots+\frac{a_1}{-a_0}E

−a0​an​​An+−a0​an−1​​An−1+⋯+−a0​a1​​A=E⇒A(−a0​an​​An−1+−a0​an−1​​An−2+⋯+−a0​a1​​E)=E⇒A−1=−a0​an​​An−1+−a0​an−1​​An−2+⋯+−a0​a1​​E

例:

A=(1−102)A = \begin{pmatrix}1&-1\\0&2\end{pmatrix}A=(10​−12​),求A−1A^{-1}A−1。

解:

∣A−λE∣=(λ−1)(λ−2)=λ2−3λ+2

|A-\lambda E| = (\lambda-1)(\lambda-2) = \lambda^2-3\lambda+2

∣A−λE∣=(λ−1)(λ−2)=λ2−3λ+2

A−1=1−2A−3−2E=−12(1−102)+32(1001)=(112012)

A^{-1} = \frac{1}{-2}A -\frac{3}{-2}E = -\frac{1}{2}\begin{pmatrix}1&-1\\0&2\end{pmatrix}+\frac{3}{2}\begin{pmatrix}1&0\\0&1\end{pmatrix} = \begin{pmatrix}1&\frac{1}{2}\\0&\frac{1}{2}\end{pmatrix}

A−1=−21​A−−23​E=−21​(10​−12​)+23​(10​01​)=(10​21​21​​)

4. 最小多项式

A→Tordm标准型→Smith矩阵→dn(λ)→最小多项式akλk+ak−1λk−1+⋅+a0=0(k≤n)akAk+ak−1Ak−1+⋯+a0E=0A(ak−a0Ak−1+ak−1−a0Ak−2+⋯+a1−a0E)=EA−1=ak−a0Ak−1+ak−1−a0Ak−2+⋯+a1−a0E

A\to Tordm标准型\to Smith矩阵\\\to d_n(\lambda)\to最小多项式\\a_k\lambda^k+a_{k-1}\lambda^{k-1}+\cdot+a_0=0(k\le n)\\a_kA^k+a_{k-1}A^{k-1}+\cdots+a_0E = 0\\A(\frac{a_k}{-a_0}A^{k-1}+\frac{a_{k-1}}{-a_0}A^{k-2}+\cdots+\frac{a_1}{-a_0}E)=E\\A^{-1} = \frac{a_k}{-a_0}A^{k-1}+\frac{a_{k-1}}{-a_0}A^{k-2}+\cdots+\frac{a_1}{-a_0}E

A→Tordm标准型→Smith矩阵→dn​(λ)→最小多项式ak​λk+ak−1​λk−1+⋅+a0​=0(k≤n)ak​Ak+ak−1​Ak−1+⋯+a0​E=0A(−a0​ak​​Ak−1+−a0​ak−1​​Ak−2+⋯+−a0​a1​​E)=EA−1=−a0​ak​​Ak−1+−a0​ak−1​​Ak−2+⋯+−a0​a1​​E

例:

若矩阵AAA的SmithSmithSmith矩阵为A=(11111)A = \begin{pmatrix}1&&&\\&1&&\\&&1&1\\&&&1\end{pmatrix}A=​1​1​1​11​​,求A−1A^{-1}A−1。

解:

由题意得

A−λE⟶Smith(1λ−1λ−1(λ−1)2)

A-\lambda E\overset{Smith}{\longrightarrow}\begin{pmatrix}1&&&\\&\lambda-1&&\\&&\lambda-1&\\&&&(\lambda-1)^2\end{pmatrix}

A−λE⟶Smith​​1​λ−1​λ−1​(λ−1)2​​

所以AAA的最小多项式为

dn(λ)=λ2−2λ+1

d_{n}(\lambda) = \lambda^2-2\lambda+1

dn​(λ)=λ2−2λ+1

于是有

A2−2A+E=0

A^2-2A+E = 0

A2−2A+E=0

所以

A−1=1−1A+−2−1E=(111−11)

A^{-1} = \frac{1}{-1}A+\frac{-2}{-1}E = \begin{pmatrix}1&&&\\&1&&\\&&1&-1\\&&&1\end{pmatrix}

A−1=−11​A+−1−2​E=​1​1​1​−11​​

5. LeVerrier-Faddeev\text{LeVerrier-Faddeev}LeVerrier-Faddeev算法

B0=0an=1B1=AB0+anEan−1=−tr(AB1)B2=AB1+an−1Ean−2=−12tr(AB2)⋯Bn=ABn−1+a1Ea0=−1ntr(ABn)0=ABn+a0E⇒A−1=−Bna0

B_0=0\quad a_n = 1\\B_1 = AB_0+a_nE\quad a_{n-1} = -tr(AB_1)\\B_2 = AB_1+a_{n-1}E\quad a_{n-2} = -\frac{1}{2}tr(AB_2)\\\cdots\\B_n = AB_{n-1}+a_{1}E\quad a_0 = -\frac{1}{n}tr(AB_{n})\\0=AB_{n}+a_{0}E\\\Rightarrow A^{-1}=-\frac{B_n}{a_0}

B0​=0an​=1B1​=AB0​+an​Ean−1​=−tr(AB1​)B2​=AB1​+an−1​Ean−2​=−21​tr(AB2​)⋯Bn​=ABn−1​+a1​Ea0​=−n1​tr(ABn​)0=ABn​+a0​E⇒A−1=−a0​Bn​​

例:

设A=(315331464)A = \begin{pmatrix}3&1&5\\3&3&1\\4&6&4\end{pmatrix}A=​334​136​514​​,求A−1A^{-1}A−1。

解:

利用LeVerrier-Faddeev\text{LeVerrier-Faddeev}LeVerrier-Faddeev算法,先确定n=3n=3n=3

B0=(000000000)a3=1B1=AB0+a3E=(100010001)a2=−tr(AB1)=−10B2=AB1+a2E=(−7153−7146−6)a1=−12tr(AB2)=4B3=AB2+a1E=(626−14−8−8126−146)a0=−13tr(AB3)=−40AB3+a0E=(000000000)⇒A−1=−B3a0=(0.150.65−0.35−0.2−0.20.30.15−0.350.15)

B_0 = \begin{pmatrix}0&0&0\\0&0&0\\0&0&0\end{pmatrix}\quad a_3=1\\B_1=AB_0+a_3E=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}\quad a_2=-tr(AB_1)=-10\\B_2 = AB_1+a_2E=\begin{pmatrix}-7&1&5\\3&-7&1\\4&6&-6\end{pmatrix}\quad a_1 =-\frac{1}{2}tr(AB_2)=4\\B_3=AB_2+a_1E=\begin{pmatrix}6&26&-14\\-8&-8&12\\6&-14&6\end{pmatrix} \quad a_0=-\frac{1}{3}tr(AB_3)=-40\\AB_3+a_0E=\begin{pmatrix}0&0&0\\0&0&0\\0&0&0\end{pmatrix}\\\Rightarrow A^{-1}=-\frac{B_3}{a_0}=\begin{pmatrix}0.15&0.65&-0.35\\-0.2&-0.2&0.3\\0.15&-0.35&0.15\end{pmatrix}

B0​=​000​000​000​​a3​=1B1​=AB0​+a3​E=​100​010​001​​a2​=−tr(AB1​)=−10B2​=AB1​+a2​E=​−734​1−76​51−6​​a1​=−21​tr(AB2​)=4B3​=AB2​+a1​E=​6−86​26−8−14​−14126​​a0​=−31​tr(AB3​)=−40AB3​+a0​E=​000​000​000​​⇒A−1=−a0​B3​​=​0.15−0.20.15​0.65−0.2−0.35​−0.350.30.15​​

6. 分块求逆

分块矩阵求逆公式如下

(A11A12A21A22)−1=((A11−A12A22−1A21)−1−(A11−A12A22−1A21)−1A12A22−1−A22−1A21(A11−A12A22−1A21)−1A22−1+A22−1A21(A11−A12A22−1A21)−1A12A22−1)

\begin{array}{c}\left(\begin{array}{ll}A_{11} & A_{12} \\A_{21} & A_{22}\end{array}\right)^{-1}= \\\left(\begin{array}{cc}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & -\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} A_{12} A_{22}^{-1} \\-A_{22}^{-1} A_{21}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & A_{22}^{-1}+A_{22}^{-1} A_{21}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} A_{12} A_{22}^{-1}\end{array}\right)\end{array}

(A11​A21​​A12​A22​​)−1=((A11​−A12​A22−1​A21​)−1−A22−1​A21​(A11​−A12​A22−1​A21​)−1​−(A11​−A12​A22−1​A21​)−1A12​A22−1​A22−1​+A22−1​A21​(A11​−A12​A22−1​A21​)−1A12​A22−1​​)​

7. Sherman-Morrison-Woodbury\text{Sherman-Morrison-Woodbury}Sherman-Morrison-Woodbury公式

Am×mA_{m\times m}Am×m​、Dn×nD_{n\times n}Dn×n​非奇异,Bm×nB_{m\times n}Bm×n​、Cn×mC_{n\times m}Cn×m​,若CA−1B+D−1CA^{-1}B+D^{-1}CA−1B+D−1非奇异,则矩阵A+BDCA+BDCA+BDC非奇异,且

(A+BDC)−1=A−1−A−1B(D−1+CA−1B)−1CA−1

(A+BDC)^{-1} = A^{-1}-A^{-1}B(D^{-1}+CA^{-1}B)^{-1}CA^{-1}

(A+BDC)−1=A−1−A−1B(D−1+CA−1B)−1CA−1