基础研究

编辑

强度干涉仪的抽象示意图

自发参量下转换示意图

20世纪50年代,汉伯里·布朗(英语:Robert Hanbury Brown)(英語:R. Hanbury Brown)与特威斯(英语:Richard Q. Twiss)(英語:R. Q. Twiss)进行了HB-T实验,其主要内容是设计了一种干涉仪以解决在基线(英语:Astronomical interferometer)较长的情况下,射电星(英语:Radio star)角直径的测量问题。这种干涉仪在射电天文学中又被称为强度干涉仪(英语:Intensity interferometer),其大致结构是:来自光源的光被半镀银镜分为两束,分别照射两个光电倍增管的阴极,两管的输出电流经过放大以后在线性混频器中相乘,如此持续运行大约一小时以获得可观测的结果。因此其在形态上类似迈克耳孙干涉仪,但不同点在于,迈克耳孙干涉仪是在检测之前混合两路信号,并且信号在混合之前始终拥有相位信息。这种干涉仪则不然,进行混合的只是两路信号的强度,相位信息在经过光电倍增管之后已经被抹去了。但即便如此,两路信号仍然表现出相干性,这意味着光场的相干性不仅在相位上体现出来,甚至仅仅在强度上也可以体现[6]。文章发表之后,一些物理学家无法在HB-T实验验证中得出显著的相干性,并声称“这种相干性的存在要求对量子力学中一些基本概念进行重大修订”。汉伯里·布朗和特威斯进行了理论推导,并尝试了对天狼星A的观测,最终验证了实验结果的合理性。这个实验将光子符合探测引入光学实验,使得人们认识到光的二阶干涉效应会造成光场的强度关联(相关性)[7]。

1970年,美国国家宇航局电子研究中心的大卫·伯纳姆(英語:David Burnham)与唐纳德·温伯格(英語:Donald Weinberg)在光子计数实验中使用了名叫“自发参量下转换”的非线性光学技术[8]。两人用氦-镉激光器产生325nm激光束泵浦25mm长的磷酸二氢铵(ADP)晶体,测得入射光子转化为相位匹配(入射光子动量和能量等于两出射光子动量和与能量和)的双光子的概率最大[9]。这一技术使得纠缠光子对可以很方便地获得。1985年以后,人们开始注意到自发参量下双光子场的存在,并开始对其进行研究和应用[8]。1988年,苏联学者大卫·尼古拉耶维奇(英语:David Klyshko)提出了一种用来验证爱因斯坦-波多尔斯基-罗森实验,并证明互补原理的方法,其中设计的一种装置实际上可以作为量子成像设备使用。这种装置进行符合检测的方法是,用两路探测器中的一路是否收到光子,来控制另一路探测的开闭[10]。大卫·尼古拉耶维奇也由此被认为是量子成像方案的提出者[11]。

纠缠光量子成像

编辑

史砚华小组的量子成像装置

装置沿光路展开

1994年,大卫·尼古拉耶维奇在一篇尝试同时使用经典表述和量子表述解释光的量子性质的论文中,从量子力学的角度阐释了双光子非定域成像的理论基础[3]。1995年,美国马里兰大学的史砚华小组以纠缠双光子作为光源,结合符合测量技术(英语:Quantum eraser experiment),实现了量子成像。史砚华小组用波长351.1nm的氩离子激光器(英语:Gas laser)产生直径2mm的光束作为泵浦源(英语:Laser pumping),泵浦被切割成为简并II型相位匹配角(英语:Nonlinear_optics#Phase_matching)的

β

BaB

2

O

4

{\displaystyle {\ce {\beta-BaB2O4}}}

(偏硼酸钡,BBO)晶体,出射两路正交偏振信号。分别将从BBO晶体的e-射线平面和o-射线平面出射的光束称为信号光和闲置光,这两路光的波长均为702.2nm,即泵浦光波长的二倍。混合有未经自发参量下转换的原泵浦光、信号光和闲置光的混合光束经过紫外级熔融石英(英语:Fused quartz)色散棱镜(英语:Dispersive prism)滤除剩余的波长为351.1nm的原泵浦光,进入作为偏振分束器的汤普森棱镜将信号光和闲置光分开。信号光束照射焦距为400mm的成像凸透镜,透过的光束经过一个简并波长为702.2nm、带宽为83nm的滤光片,再照射在物体(写有“UMBC”字样的光圈)上。经过物体之后,信号光束再通过一个焦距为25mm的收集凸透镜,到达一个直径为0.8mm的干冰冷却雪崩光电二极管D1,这个雪崩光电二极管恰位于收集透镜的焦点上。闲置光束经过另一个同样的滤光片,不经过物体,直接照射在由0.5mm多模光纤尖端上,再到达另一个干冰冷却雪崩二极管D2。两个正交的编码驱动检测器在垂直于光束方向的平面上进行扫描,并将检测器的输出脉冲发送到接收窗口为1.8ns的符合计数器(英语:Coincidence circuit)。设成像透镜到收集透镜距离为S,成像透镜到多模光纤尖端距离为S',成像透镜焦距为f,当三者满足关系式

1

S

+

1

S

=

1

f

{\displaystyle {\frac {1}{S}}+{\frac {1}{S'}}={\frac {1}{f}}}

时,装置可产生清晰物像。其中符合计数器的原理是,两探测器均有响应时才计数,如果只有一个有响应或都没有响应则不计数[12]。探测器D1没有空间分辨率,D2所在的闲置光(参考光)光路中没有待成像物体,所以两者都不能单独完成物体成像;但处于无物体参考光路的D2探测器经过逐点扫描再与D1结果关联之后得到了物体的像,使得量子成像又被称为“鬼”成像[13]。

1997年,索托·里贝罗(英語:P. H. Souto Ribeiro)小组发现,当自发参量下转换晶体足够薄(在泵浦光传播方向上足够短)时,泵浦光束的角频谱(英语:Angular spectrum method)将转化为自发参量下转换过程生成的双光子状态。小组通过将自发参量下转换光束的横向特性与泵浦光束的横向特性联系起来,提出了控制信号光子与闲置光子之间横向空间相关性的方法,实现了对纠缠光子关联性质的调制,使得在不向信号光路和闲置光路添加任何光学器件的情况下,也可以控制符合检测入射光束的横向特性,而不对强度产生影响[14]。

经典光量子成像

编辑

史砚华小组实验验证量子成像之后,经典光是否能实现量子成像在学术界产生了争议。2001年,波士顿大学的艾曼·阿布瓦迪(英語:Ayman F. Abouraddy)小组分别用经典光和纠缠光进行了量子成像实验,之后发表评论称,纠缠光可以成部分相干像或者甚至完全相干像,经典光只能成非相干像;量子成像是纠缠光的特性,其他双光子源并不能模仿[15]。然而,2002年,罗切斯特大学的瑞安·本宁克(英語:Ryan S. Bennink)团队就使用随机扫描激光光源证明了了经典光源也可以进行量子成像。Bennink团队对连续激光束进行斩波,通过随机旋转反射镜产生不同方向的偏转光,再通过分束器来产生经典光源;用桶探测器(英语:Single-photon avalanche diode)检测信号光是否未被测试图案遮挡,并记录信号光未被遮挡时CCD拍摄参考光记录下的帧,即用桶探测器门控CCD。实验结果是,未门控时CCD无法拍摄到图案,经过门控之后CCD可以拍摄到测试图案。这证明了,尽管经典光源没有纠缠光源所特有的一些全局性质,但具有一定相关性的经典光源仍然可以通过符合计数产生量子成像现象[16]。

2004年,意大利的路易吉·卢吉亚托(英语:Luigi_Lugiato)小组提出了热光源的量子成像理论方案。在这种方案中,来自热光源的光束被分束器分为两束,后续处理与纠缠光源成像相同,小组通过类比纠缠光源和热光源的成像过程,推断可以使用纯粹的非相干光源(热光源)实现量子成像[2]。2005年,史砚华小组用氦氖激光器产生的激光入射旋转毛玻璃(英语:Frosted glass)盘产生的赝热光源为光源,发现了非纠缠光源的双光子成像高斯薄透镜方程,实现了量子成像[17]。同年,中科院物理所的吴令安小组实现了真热光的双光子二阶关联[18],不久后用20mA直流供电、谐振波长780nm的空心阴极灯(英语:Hollow-cathode lamp)(铷灯)实现了真热光源量子成像[19]。

尽管已经证明无论经典光源还是纠缠光源都可以进行量子成像,但费里(F. Ferri)小组于2005年发表文章称,成像的分辨率具有一个上限,这个上限只有使用纠缠光源可以达到。这证明,纠缠光源相对经典光源量子成像,具有信息可见性和分辨率更高的优势,这种优势在高精度测量和量子通信领域都有应用[1]。另一方面,热光源更容易生成和测量,但成像的分辨率会更低,背景噪声(英语:Background noise)更强[18]。

2008年,美国麻省理工学院教授杰弗里·夏皮罗(英语:Jeffrey Shapiro)使用高斯态光模型理论对量子成像原理进行了统一的解释[20]。

无透镜量子成像

编辑

2004年,韩申生和程静提出可以通过适当选择成像几何形状,用非相干光源实现无透镜傅里叶变换成像。这为非可见光量子成像,如X射线衍射成像,提供了理论上的可行性[21]。2006年,史砚华小组实现了无透镜或其他等效成像系统的赝热光源量子成像,这种方案适合任何波长的辐射作为光源,并且形成图像的过程中不需要任何成像透镜,因此这种方案对于X射线、伽马射线和其他波长光源的成像应用帮助很大[22]。

计算量子成像

编辑

传统量子成像与计算量子成像对比示意图

夏皮罗也提出了计算量子成像的理论。与传统量子成像不同,计算量子成像方案仅保留了包含待成像物体的测量光路和桶探测器,通过激光照射空间光调制器(英语:Spatial light modulator)产生可调强度、相位等参数的空间调制光场(又称为主动式光源),再根据衍射理论计算得到原参考光路在无透镜量子成像中可以得到的特定位置的光强分布,与测量光场进行符合关联得到图像。这种方案所用的装置可以生成没有背景噪声(英语:Background noise)的图像,其分辨率和成像区域可以通过调整空间光调制器的参数来控制[23]。2009年,以色列科学家B. Sun等人在3D成像实验中验证了计算量子成像的可行性[24]。

差分量子成像

编辑

2010年,意大利学者路易吉·卢贾托(英语:Luigi Lugiato)等提出差分量子成像(差分鬼成像,英語:Differential Ghost Imaging,DGI)的方案,该方案提高了量子成像信噪比的数量级,大幅提高了量子成像的成像质量,在一些强干扰和背景噪声较大的环境下表现较为良好[25],但需要大量的测量数据和更复杂的计算[26]。2012年,罗开红及其同事提出一种名为“对应成像(英语:Correspondence problem)”(英語:Correspondence Imaging,CI)的技术,可概述为选择桶探测器在正向或负向的强度波动(正信号与负信号),对对应的参考光路所得的数据进行条件平均,而不是用桶探测器获得的光强与参考光路所得数据直接相乘[27]。2013年,中科院物理研究所吴令安小组提出时间对应差分量子成像,将差分量子成像和对应成像的优点结合起来,降低了数据处理难度,缩短了成像所需的计算时间[26]。